Metabolic Disrupting Potential of Unconventional Oil and Gas Operation Chemicals and Mixtures

Chris Kassotis, PhD Postdoctoral Fellow Duke University @cdkassotis

> TEDX Webinar September 4, 2018

Outline

- Hydraulic fracturing/unconventional oil and gas (UOG) operations
- Endocrine disrupting chemicals (EDCs) and hormones
- > Adipogenesis (fat cell development)
- Metabolic disruption potential of UOG chemicals
- Implications, future directions

The Hydraulic Fracturing Process

3

Graphic by Al Granberg

Fracturing Fluid Composition

Potential Routes of Water Contamination

Oil and Gas Development Spills

Figure 3. Annual spill rate. Dashed vertical lines represent changes in reporting requirements.

Patterson et al. 2017, ES&T

Unconventional Oil and Gas Operations as Source of Endocrine Disruptors

Colborn et al 2011, Hum Ecol Risk Assess

Normal Hormonal Function

Hormone/EDC Action

2) Indirect Interactions

Receptor Expression Hormone Levels Receptor Response

An endocrine disruptor is "a chemical or mixture of chemicals in the environment that interferes with any aspect of hormone action." – The Endocrine Society, 2012.

Disruption of Hormone Receptors and Adverse Health Outcomes

Altered Health Following Gestational Exposure to UOG Chemical Mixture

Endpoint	Males	Females
Body weight	Î	Î
Heart weight		
Heart collagen deposition	Î	1
Testis weight	1	N/A
Sperm count/quality	Û	N/A
Serum testosterone	1	N/A
Time to puberty	-	-
Litter size/sex ratio	-	-
Pituitary hormones	N/A	Û
Ovary/uterine weights	N/A	<mark>. 1</mark>
Ovarian follicle development	N/A	1
Mammary development	N/A	1 *
Immune function/challenge response	-	Û

Kassotis et al 2015, 2016; Boulé et al 2018; Sapouckey et al. 2018

Potential Role of Chemicals in Increasing ¹² Obesity Rates in Humans

- First posited in 2002, despite decades of experimental evidence.
- Challenges caloric intake, activity, genetics as sufficient factors to explain magnitude/speed of observed trend.
- Summarizes wealth of animal evidence on antibiotics, PCBs, plastics, pharmaceuticals, pesticides, organophosphates, heavy metals, etc.

DO CHEMICAL TOXINS CAUSE OBESITY?

Baillie-Hamilton et al. 2002, J Alt Comp Med

Adipocyte Differentiation Process

14

3T3-L1 Pre-adipocyte Adipogenesis Assay

- Swiss albino mouse embryonic fibroblast cell line committed preadipocytes
- + Extensively used over decades to evaluate adipogenesis
 - Mechanisms of adipocyte differentiation well understood
 - + This assay, particularly coupled with PPARγ reporter gene assays, has proven a reliable *in vitro* model for metabolic disruption *in vivo*.

Adipogenesis Assay Measures

- Triglyceride accumulation
 - AdipoRed hydrophilic fluorescent dye (Nile Red)
 - Partitions into lipid droplets in the cells, fluoresces

(A)

(B)

- Cell proliferation/cytotoxicity
 - NucBlue DNA dye (Hoechst 33342)
 - Partitions into nuclei and fluoresces upon binding DNA

Study Design

- + Hypothesis: UOG-related chemicals will promote adipogenesis via PPARγ-independent mechanisms.
 - Selected 8 UOG-impacted water sample extracts
 - Four from WV (wastewater injection well site; 1 reference, 1 control, 2 downstream)
 - Four from CO (near UOG well/spills; 1 control, 3putative impacted samples)
 - Tested two UOG wastewater samples (CO)
 - Tested one mixture of 23 commonly-used UOG chemicals

Chemical Name

1,2,4-trimethylbenzene 2-(2-methoxyethoxy) ethanol 2-ethylhexanol Acrylamide Benzene Bronopol Cumene (Isopropylbenzene) Diethanolamine Dimethylformamide Ethoxylated nonylphenol (6) Ethoxylated octylphenol (4) Ethylbenzene Ethylene glycol Ethylene glycol monobutyl ether (2-BE) Methyl-4-isothiazolin Naphthalene Phenol Propylene glycol Sodium tetraborate decahydrate Styrene Toluene Triethylene glycol Xylenes (isomer mix)

Commonly-Used UOG Chemical Mixture ¹⁷ Promotes Adipogenesis in 3T3-L1 Cells

23-mix lab mixture exhibits significant adipogenic activity: triglyceride accumulation relative to rosiglitazone positive control, and preadipocyte proliferation relative to differentiated vehicle control.

18 UOG Wastewater-Impacted Water Extracts Promote Adipogenesis at Low Concentrations

- Wastewater and wastewater-impacted water samples promote adipogenesis at diluted concentrations:
 - WW1: at 0.01x water concentration (1:100 dilution)
 - CO-65, 23, 15, WV-03 at 0.4x and 4x water concentration (SPE extracts) stimulated triglyceride accumulation
 - CO-65, 23, 15, WV-06, 03 at concentrations as low as 0.04x stimulated preadipocyte proliferation

Kassotis et al 2018, *STOTEN*

19 UOG Mixture Promotes Adipogenesis via PPARγ-Independent Mechanism

23-mix, WW1, CO-65, 23, WV-03 stimulate PPARγ activity as well as adipogenesis.

CO-15, WV-06 may be adipogenic via other mechanisms.

Kassotis et al 2018, STOTEN

Nuclear Receptor Inhibition by **Unconventional Oil/Gas Chemicals**

Antagonist Receptor Activity of Water Extracts

Kassotis et al 2015, Endocrinology

Kassotis et al 2018, STOTEN

Presence of Alcohol Ethoxylates in Unconventional Oil and Gas Wastewater

- Suite of studies has measured alcohol and alkylphenol ethoxylates in fracking wastewater samples.
- High-production volume chemicals
 - + >13 million metric tons, 2008
 - + >\$33 billion global revenues, 2014
- Used widely in laundry detergents, hard-surface cleaners, paints, cosmetics, agriculture.
- + Common environmental contaminants
- A concurrent project in our lab evaluated a series of these ethoxylated surfactants for adipogenic activity.

Various Alkylphenol and Alcohol Ethoxylates Induce Adipogenesis

- Six ethoxylated surfactants (alkyl lengths 11-16) all induced triglyceride accumulation in 3T3-L1 cells.
 - Cetyl alcohol and NPEO induced greater maximal accumulation than the rosiglitazone control.
- > 4/6 surfactants induced pre-adipocyte proliferation.

Ethoxylated Surfactants Do Not Promote ²³ Adipogenesis Via PPARγ Activation

PPARγ Activity Ethoxylated Surfactants

- Neither various alkyl length surfactants nor various ethoxylate chain length nonylphenols exhibited any activation.
 - Confirmed in cell-free co-activator recruitment assay.

Ethoxylated Surfactants May Promote Adipogenesis Via TRβ Antagonism

TRβ Antagonism Ethoxylated Surfactants

- Several ethoxylated surfactants exhibited significant TRβ antagonism, independent of inhibited cell viability.
- Further work (cell-free) needed to confirm mechanism & evaluate other potential pathways.

Overall Take-Homes

- + Unconventional oil/gas production chemicals and mixtures may be able to disrupt metabolic health.
 - + High metabolic disruption potential in surface and groundwater from regions with oil and gas wastewater influence.
 - + Significant induction of fat cell development at very diluted concentrations of impacted water samples
- + Causative chemicals and molecular mechanisms promoting these effects have yet to be determined.
 - + PPARγ activation and TRβ antagonism appear to be likely mechanisms promoting at least some of the effects
 - Polyethoxylated surfactants may be responsible for at least a portion of the adipogenic activity observed in environmental samples herein
- Exposure to these chemicals may result in adverse health effects in humans and/or animals living nearby, particularly during critical windows.

Acknowledgements

+ Stapleton Lab

- + <u>Heather Stapleton, PhD</u>
- + Erin Kollitz, PhD
- + Kate Hoffman, PhD
- + Ellen Cooper, PhD
- Nick Herkert, PhD
- + Allison Phillips
- + Stephanie Hammel
- + Matt Ruis
- + Emina Hodzic
- + Kirsten Overdahl
- + Sharon Zhang

+ Univ. of MO

- <u>Susan Nagel, PhD</u>
- + Jenn Cornelius-Green

26

Funding

NIEHS R01 ES016099-06 NIEHS F32 ES027320-01

National Institute of Environmental Health Sciences